Inversion of k-tridiagonal matrices with Toeplitz structure
نویسندگان
چکیده
In this paper, we consider an inverse problem with the k-tridiagonal Toeplitz matrices. A theoretical result is obtained that under certain assumptions the explicit inverse of a ktridiagonal Toeplitz matrix can be derived immediately. Two numerical examples are given to demonstrate the validity of our results. (c) ٢٠١٢ Elsevier Ltd. All rights reserved.
منابع مشابه
The Characteristic Polynomial of Some Perturbed Tridiagonal k-Toeplitz Matrices
We generalize some recent results on the spectra of tridiagonal matrices, providing explicit expressions for the characteristic polynomial of some perturbed tridiagonal k-Toeplitz matrices. The calculation of the eigenvalues (and associated eigenvectors) follows straightforward. Mathematics Subject Classification: 15A18, 42C05, 33C45
متن کاملStructured Perturbations Part I: Normwise Distances
In this paper we study the condition number of linear systems, the condition number of matrix inversion, and the distance to the nearest singular matrix, all problems with respect to normwise structured perturbations. The structures under investigation are symmetric, persymmetric, skewsymmetric, symmetric Toeplitz, general Toeplitz, circulant, Hankel, and persymmetric Hankel matrices (some resu...
متن کاملSpectral properties of certain tridiagonal matrices
We study spectral properties of irreducible tridiagonal k−Toeplitz matrices and certain matrices which arise as perturbations of them.
متن کاملOn the Fast Reduction of Symmetric Rationally Generated Toeplitz Matrices to Tridiagonal Form
In this paper two fast algorithms that use orthogonal similarity transformations to convert a symmetric rationally generated Toeplitz matrix to tridiagonal form are developed, as a means of finding the eigenvalues of the matrix efficiently. The reduction algorithms achieve cost efficiency by exploiting the rank structure of the input Toeplitz matrix. The proposed algorithms differ in the choice...
متن کاملThe Structured Distance to Normality of an Irreducible Real Tridiagonal Matrix
The problem of computing the distance in the Frobenius norm of a given real irreducible tridiagonal matrix T to the algebraic variety of real normal irreducible tridiagonal matrices is solved. Simple formulas for computing the distance and a normal tridiagonal matrix at this distance are presented. The special case of tridiagonal Toeplitz matrices also is considered.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 65 شماره
صفحات -
تاریخ انتشار 2013